Discrepancy and Eigenvalues of Cayley Graphs

نویسندگان

  • Y. Kohayakawa
  • V. Rödl
  • M. Schacht
چکیده

We consider quasirandom properties for Cayley graphs of finite abelian groups. In particular, we show that having uniform edgedistribution (i.e., small discrepancy) and having large eigenvalue gap are equivalent properties for Cayley graphs, even if they are sparse. This positively answers a question of Chung and Graham [“Sparse quasi-random graphs”, Combinatorica 22 (2002), no. 2, 217–244] for the particular case of Cayley graphs, while in general the answer is negative.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the eigenvalues of normal edge-transitive Cayley graphs

A graph $Gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$‎, ‎respectively‎. ‎Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$‎. ‎Then, $Gamma$ is said to be normal edge-transitive‎, ‎if $N_{Aut(Gamma)}(G)$ acts transitively on edges‎. ‎In this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

On the eigenvalues of Cayley graphs on generalized dihedral groups

‎Let $Gamma$ be a graph with adjacency eigenvalues $lambda_1leqlambda_2leqldotsleqlambda_n$‎. ‎Then the energy of‎ ‎$Gamma$‎, ‎a concept defined in 1978 by Gutman‎, ‎is defined as $mathcal{E}(G)=sum_{i=1}^n|lambda_i|$‎. ‎Also‎ ‎the Estrada index of $Gamma$‎, ‎which is defined in 2000 by Ernesto Estrada‎, ‎is defined as $EE(Gamma)=sum_{i=1}^ne^{lambda_i}$‎. ‎In this paper‎, ‎we compute the eigen...

متن کامل

On the distance eigenvalues of Cayley graphs

In this paper, we determine the distance matrix and its characteristic polynomial of a Cayley graph over a group G in terms of irreducible representations of G. We give exact formulas for n-prisms, hexagonal torus network and cubic Cayley graphs over abelian groups. We construct an innite family of distance integral Cayley graphs. Also we prove that a nite abelian group G admits a connected...

متن کامل

COMPUTING THE EIGENVALUES OF CAYLEY GRAPHS OF ORDER p2q

A graph is called symmetric if its full automorphism group acts transitively on the set of arcs. The Cayley graph $Gamma=Cay(G,S)$ on group $G$ is said to be normal symmetric if $N_A(R(G))=R(G)rtimes Aut(G,S)$ acts transitively on the set of arcs of $Gamma$. In this paper, we classify all connected tetravalent normal symmetric Cayley graphs of order $p^2q$ where $p>q$ are prime numbers.

متن کامل

Finite groups admitting a connected cubic integral bi-Cayley graph

A graph   is called integral if all eigenvalues of its adjacency matrix  are integers.  Given a subset $S$ of a finite group $G$, the bi-Cayley graph $BCay(G,S)$ is a graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid sin S, xin G}$.  In this paper, we classify all finite groups admitting a connected cubic integral bi-Cayley graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003